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ABSTRACT

i P.reto surfaces and attainable sets of complexity 1 (i.e., those having
i

a l-coimodi*y representation and no 0-comrodity representation) are treated.

i An implicit characterization of these sets is given, and various of their

i properties are derived. In particular, Pareto surfaces of complexity ar most

1 are always closed se:5.
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§1. INTRODUCTION

In {3], the authors define and characterize the attainable sets and Pareto
surfaces for systems of n concave, continuous real functions defined on the
unit m-cube I"., In that work, the notion of complexity of an attainable set
(and its as...ciated Pareto surface) is defined and briefly discussed. It is
the purpose of this paper to study those attainable sets and Pareto surfaces
having complexity equal to 1. We shall give an implicit characterization of
complexity 1 attainable sets and derive some of its consequences. One of these
is that complexity 1 Pareto surfaces are always closed.

Let I" = [0,1]m be the unit m-cube, where m is a positive integer,

We take 1° = {0}). For m> 0, let € = (1,...,1) ¢ I, and take e° = 0.

m .
Let m > 0, and suppose u;: I+ R are concave, continuous functions for

i=1,...,pn

Definition 1.1: The attainable set for Upse ooty is the set

. n .
(1.1.1) Vs (x e Rx, < ui(yi); yle 1™, §ylse™.
]

The Pareto surface for u

[EEEERLN is the set

@41.2) Pa{xeVlyeV,y>x >y=x}

In [3], attainable sets in Rn are characterized as all sets of the form
n n . n n :
C - R+, where C C R is compact and convex, R+ = [0,)", and the minus
denotes algebraic subtraction of sets. By definition, the Pareto surface
associated with an attainable set V is the set of all maximal elements of V

with respect to the normal partial order on R". A set P is a Pareto surface

1
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if and only if P 1is bounded, P contains no two distinct comparable elements,
and P - Rf is closed and convex (see [3]). Pareto surfaces need not be
closed sets.

Let V be an attainable set in R". If Upse..,u  are continuous,
concave functions on Im, for some m, such that V is given by (1.1.1)
for these ui's, then the ui's will be called a representation for V over
I". We define the complexity of V (denoted com V) to be the least m 2 0
such that there exists a representation for V over I". The complexity of
a Pareto surface P will be defined to be the complexity of the associated
attainable set V= P - R?.

It is easy to see that com V=0 if and only if V = {x} - R? for
some x e R" (and this implies a unique complexity O representation:
ui = xi on Io). Such a set will be called a corner (or a corner on x).

A corollary of the characterization of [3] is the fact that com V < n(n-1)
for any attainable set in R". There it is conjectursd that this number can
be reduced to n-1. This conjecture is easily verified for n = 1 and 2, but
remains unsettled already for n = 3. Our approach here will be somewhat
different: ‘e will consider those attainable sets in K" having complexity
1, wiere n 1is unspecified.

The idea of considering attainable sets and Pareto surfaces arises in

n-person game theory and mathematical economics. For work related to this

subject, see [2], [4] and [S].

52. A CHARACTERIZATION OF COMPLEXITY 1 ATTAINABLE SETS

Taroughout the remainder of the paper V C R" wiil be an attainable set.

Denote N = {1,...,n}. The following lemma allows us to extend concave

i i ik R o m it et isa i i A2 0 e o 6 ks b Sadisiieats b on g cial i R el R ) gkl 7'-%_ Lk ek i G e S i s S e
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§L nondecreasing functions without destroying concavity.

Lemma 2.1: Suppose a <b <c and f: [a,b] + R 1is concave, continuous and
nondecreasing, Define g: [a,c] + R by g|{a,b] = £ and g(x) = £f(b) for

x € [b,c]. Then g 1is concave, continuous and nondecreasing.

Proof: The function g 1is clearly continucus and nondecreasing. It is

concave on [a,b] since f is, and it is concave on [b,c] since it is
constant, Thus to prove concavity of g on [a,c] it suffices to take

x € [a,b), y € (b,c], a € (0,1) and show glax + (1-a)y) 2 ag(x) + (1-a)g(y).
Put 2z = ax + (1-a)y. If z > Db then since g is nondecreasing we have
g(z) 2 max{g(x), g(y)} which implies

52’ g(z) = ag(z) + (1-a)g(z) 2 ag(x) + (l-a)g(y). Assume z < b, Define

a' € (0,1) by z = a'x + (l-a')b, i.e., a' = (b-z)/(b-x). Then

a = (y-z)/(y-x) > o' since y > b. Hence

g(z) = g(a'x + (1-a")b)

iv

a'g(x) + (1-a')g(b)

a'g(x) + (1-a')g(y)

fl

v

ag(x) + (1-a)g(y)

where the first inequality follows because f 1is concave and the second
inequality follows because g(y) 2 g(x) implies ag{x) + (l-a)g(y) Is a

nonincreasing function of a (]

sk Sty s el o

{ Theorem 2.2, If com V =1 +hen V can be given a complexity 1 representa-

tion with all uy nondecroasing,
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Proof: Let U [0,1] + R, 1 e N, be a representation of V. (Thus the
ui's are continuous and concave.) For i e N let m, be such that
uy (my) = max{ui(x)lx e [0,1]}. We define {;i: 0,17 + R|i € N} as follows.

If Z m, >1 put
ieN
_ , (X) x € [0,m,]
(2.2.1) U (x) = [U 1
"i(mi) X € (mi,I], and

if ) m, < 1 put
ieN

u.(m;) xe [0,m]
(2.2.2) 5. (%) =‘f 171 i
1 '\ui(x) X € (mi,l],

Suppose we have the case ,‘: L 1. Then ;i are concave, uondecreasir.g
ieN
and continuous by Lemma 2.1. Ve must show they generate V. Since ug 2y,
L ¢ N, it follows that V C {x ¢ Rn|xi ;_Gi(yi); Yi 20, Zyi = 1}, Conversely,

n
suppose x € R, x

A

ui(yi), y. 2

©
i 20, py. =1. Suppose Ve > M for some

i i

k € N. Since § m, 2 1 there exists an £ € N such that Yo ¢ m,. But
ieN
then 'y, can be decreased and  y,  incieased so that N y; =1 1is maintained,
ieN
uk(yk) is unchanged and ul(yl) is at worst increased, Thus we may assume

- “ - K3
that Y; ;mi for all i € N. But then X, < ui(yi) = ui(yi)’ i € N, which

implies x € V, This completes the proof if 2 m 2 1. In case 2 m < 1
ieN ieN
the proof is similar. In particular the Hi are nonincrcasing, concave and

continuous since Ei(l-x) is nondecreasing, concave and continuous by Lemma 2.1.
It is a consequence of the above arguments that we may now assume “ has

a representation with all uy nonincreasing. In this case we define Ei'

iew, by
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[ui(l - (m-1)x) x € [0,1/(n-1}]
Qxi(O) x ¢ (1/(n-1),1].

The Gi are continuous, concave and nondecreasing by Lemma 2.1. Let V be
the attainable set for ﬁi,...,ﬁ;. To see that V = V take x; 20,
) x; =1 sothat z= (Gi(xl),...,ﬁg(xn)) e V. As above it follows that we

ieN

may assume X, £ 1/(n-1), i € N, since each u, is constant for Xy 2 1/(n-1),

i
Put y, =1- (n-1)x,. Then y, 20, Jy.= ] [l- (n-1)x,] =
i i i = i i
_ ieN ieN
n - {n-1} E x, =1 apd u.(y.) = ui(x.) for each i, Thus 2z £ V., Con-
o o ivi i
vessely, if x, 20 and Y x; =1 sothat z = (u(x;),...,u(x)) eV,

ieN
then let y, = (1-x,)/(n-1). Then y, 20, iZNyi =1 and U (y,) = u(x),

so z ¢ V. This completes the proof. []

Remark: One cannot in general make the uy nonincreasing. This follows frop the
observation that if com V=1 and V has a nonincreasing representation,

then there is z. ¢ V, i e N, where z; = bj = sup{lex eVl for j#1i

and z} is "sufficiently small." To prove the observation note that if the

u, are nonincreasing then ui(O) = bi' For an example consider

vV = conv{(1,0,0),(0,1,0),(0,0,1)} - Rf given by the utilities ui(x) = X,

x € [0,1}. There isno x ¢ V with x, = x, = 1,

1 2

Lemma 2.3: Suppose Ai > C and c, € R, i e N, Then comV =m if and

only if com({y ¢ Rnlyi = AjX; +Ciy XE v}) = m.

Proof: If {ulli e N} is a complexity m representation for V then
{Aiu1 + ci|i e N} i a complexity m representation for

1]
{y ¢ Rnlyi = Aixi te,xe V}. For the converse, take A

i = l/ki and
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3 ci/Ai, ieN. [J
Since every attainable set is of the form C - Rg where C is compact
and convex, it is a consequence of Lemma 2.3 that we may {(and will) assume
every V satisfies

(2.4) b, = sup{xilx €Vl =1 for each i ¢ N, and

(2.5) P CR

+»+ >

Lemma 2.6: If com V =1 then there ar® nondecreasing, nonnegative functions

{uili € N} which represent V and satisfy u,(1) =1 for ieN.

Proof: By Theorsm 2.2, we may assume we have a representation with all the

u; rnondecreasing. Let m, = inf{xlui(x) > 0}. We must have [ m €1 by

ieN
(2.4) and (2.5). For if [ m, > 1, then whenever ) x. = 1, we must have
ieN i ieN !
an i such that X5 < m, . From thic we conclude that each y ¢ P has a
negative coordinate, contrary to (2.5). If 2 m, = 1, then we must ‘e
ieN

P = {0} by (2.5), which contradicts (2.4).

For each i € N, define Gi: [0,1] + R, by

u.(x) =u ([1-§mnlx+m).
i i jeN j i
The Ei are clearly nondecreasing, concave and continuous, as well as non-
negative (U;(O) = u,(m) 2 0). We first show that {Gili € N} represents V.,

To this end take vy € I" such that Z y. = 1l. Put x, = (1 - E m,)y., +m,.
. i i . j7a i
ieN jeN
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G&(x) £1 for xe f[0,1]. Since V =(C - Rf, C compact, it fol".ows from

7
Then x, 20, § x; = (1 - Im) Yy, + ) mo =1 and u. (y.) = u (x,).
: ieN ! n jeN J ieN ' deN? 11 i-a
Conversely, take x ¢ I such that Z x. =1 and (u,(x,),...,u {x)) € P,
ieN i 171 nn
Then ui(xi) > 0 by (2.5), and hence X; g.mi. Put y; ® (xi-mi)/(l-‘Zij)
Then y, 2,0, ) y; =1 and ﬁi(yi) = u, (x;). This proves (ﬁili ¢ N}

ieN
represenics V.,

To show that Ei(l) = 1 for each i, note first that (2.4) implies

(2.4) that, for each i, there exists x € V such that x, = 1. But the G;
generate V, so that i{\ere is a t € [0,1) such that u;(t;) 2 1. Thus G;

nondecreasing implies 5;(1) =1. (]

Theorem 2.7: Assume '/ satisfies (2.4), (2.5) and com V2 1, Then comV =1
if and only if V= {x ¢ In| Z h. (x ) =1} - R? where, for each i,

ieN !
h. = {0,1] » [0,1] is convex, nondecreasing and continuous, and h (0) s 0,

Further pc{erIZh(x) 1} and VNI {er|{h(x)<1}
ieN ieN

Proof: Suppose comV =1 and take a representation {uili € N} as specified

in Lemma 2.6. Let m = inf{x e [0,l]|ui(x) = 1}. By continuity u,(m) = 1.
By concavity uy is strictly increasing on [O,mi] and hence, by continuity,
a bijection of [O,mi] onto [ui(O),l] < [0,1]. Let hi be the inverse of
u, 3 hi: [ui(O),l] + [O,mi]. hi is clesarly convex, nondecreasing and
continuous. Extend hi to be defined on [0,1] by hi(x) = hi(ui(O)) = 0
for x ¢ [O,ui(O)). Thus exteaded -hi(l—x) is concave, nondecreasing and
continuous by Lemma 2.1. We conclude that hi is convex, nondecreasing and

continuous,

To completc this half of the proof it remains to show

Ve {(x el | Z ni(x ) = 1} - R?. Por this it suffices to verify
ieN
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PCixell Z hy (x;) = 1} €V, Take x ¢ P, Then x = (uy ) seeeru (v)))
for y, > 0, Z y; = 1. From com V2 1 we deduce y, <m for some

1= ieN = k _
k € N, and so if Y5 > m, for some i € N ther there exists an x > x

with x eV end x > X This contradiction to x ¢ P proves y; £ m

for all i € N. Thus { hi(xi) ] Z h (u (y }) = Z y; = 1, and so by (2.4)

ieN ieN
and (2.5) x ¢ {x el | ], (x ) = 1} Now suppose x ¢ {x €¢I | E h (x ) = 1},
ieN ! ieN T

Note that hi(xi) 2 0. Further since uy h (x) = x for x ¢ [u (0),1} s.d

uihi(x) = ui(O) for x ¢ [O,ui(o)] it follows that uihi(xi) 2 X Thus

x eV,
To prove the second half of the theorem suppose
= {x e I ) h, (x,) = 1} - R? with the h, as specified in the theorem,

1eN ?
Put m, = sup{x € [O,I]Ehi(x)

0}, i e N. As in the first part of the proof
hi is a bijection of [mi,I] onto [0,hi(l)]. Again, as in the first part

of the proof we let uy be the irverse f hi and extend Uy to [0,1] by
ui(x) =1 for x ¢ [hi(l),ll obtaining a continuous, concave and nondecreasing
function. By assumption ~om V > 1, To show com V =1 we show

F'C(yfklyi u(x),x >0,] x, =1} cV. Take y e P. By the
i= ieN 1
definition of P it fo'lows from V = {y e¢ R | z h. (y ) =1} - R that
leN

Zhi(yi) = 1, But hi(yi) > 0 by assumption, Further uihi(u) = a for

a ;xni and for a < m, uihi(u) =m  so that u.h.(yi) > Y Conversely,

suppose y € Rn, y. $u,(x.), x, 290 and z x, = L. It is easy to see
s I i | i= 1eV

that we may assume x < hi(l) fcr each 1. Otherwvise V is the corner on

(1,...,1) and comV =0, Hence [ h, % %4 ) = ] x;, =1 and so y e V.
ieN ieN !

Finally, v N "= {xel l z h, (xi) 1} is a consequence of the hi's
ieN
being nondecreasing and continuous.
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Example: It follows from Theorem 2.7 that for an irceger n 2 2,

1

com (Sn'l-R':) = | with hi(t) = tz, where S"' is the n-1 sphere in Rn.

n

n-l_R
+

A set {u./|i e N} which represents S is given by u,(t} = /t.

§3. SOME FURTHER PROPERTIES

We assume (2.4) and (2.5) throughout this section. Unless otherwise
stated we will also use the convention that hi denotes a convex, nondecreasing,

continuous function from [0,1] to [0,1] which satisfies hi(O) = 0,
Theorem 3.1: com V <1 implies P 1is closed.

Proof: If comV = 0, P is a single point, and therefore closed.

Su,nse com V =1, We have P C {x ¢ In| }: hi(xi) = 1} €V by Theorem
ieN
2.7. To show P is closed take {xj) C P with xj + x, We show x € P.

By continuity | hi(xi) = 1. If x £ P there exists x € P such that
ieN
X 2 x and ;k > X for some k € N. Since each h, is increasing this

implies hk(§k) = h (x,) and hence h (x) = hk(ii) for x € [o,Ii]. But

xi + %, implies xi’( < ')i'k for sufficiently large j. For such a large j

)

5. 5. = j
let x; = x3 for i #k and X, = %. Then x’ eV, x*2x

;l)( > x‘J( contradicting x) € P. We conclude x ¢ P. D

and

.

Examp_le: Let

2

3 2
A={xcR+|xl+x3=l,a2-0},
8 = conv (AU ((,1,1)}) and
VeB - R3.

+
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I; Then P = B\{x ¢ Rflrl = 0, X, = 1 and X, < 1} which is rot closed (see
(1]). Thus com V 2 2. To see that com V = 2 define {ui = 1% » Rli e N}
| 3: by u,(x,y) = X, U.(x,y) =y and 2
g .
4 u (x,y) = sup{z| (z,1-x,1-y) ¢ V}.
1
L.
Uy is concave and continuous since V is convex and closed, and u, is

defined over a polyhedral set (namely 12).

- Define a, and bi‘ ieN, by

i

.-MPMW I A T L
2\..

R

%; . a = inf{xi|x e P} and

-

i b, = sup{xilx e P} = sup{xi|x e V}.

St

By (2.4), we have that bi = 1 for each i,

Theorem 3.2: Suppose that V satisfies =0 if a < 1, and comV # 0.

44

Then com V = 1 if and only if V= {x e I"| ] h (x;) =1} - R where the
ieN

hi are strictly increasing when a = 0 and constant when a; = ..

Proof: If V= {x € I"| ] h(x;) = 1} - R, then by Theorem 2.7, com ¥ = 1.
icw
Suppose com V = 1, By Theorem 2,7 we have V = {x ¢ In| Z hi(xi) = 1} - R:.
ieN

where the hi are as specified at the beginning of this section. Suppose

k €e N and a = 0. Then by Theorem 3.1 there is an x ¢ I such that

x, = 0. By Theorem 2.7 ) hi(x;) = 1. If h_ is not strictly increzsing
jen 11
then by convexity since hk nondecreasing there is a t > 0 such that

— n - ; -
hk(t) = 0. Define x ¢ R by X, = x for i #k and X, = t. Then

I
B
) |
|1
2
1
E

l
F
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y hi(;i) = 1 which implies X ¢ V contradicting x e P. Hence, h, is

strictly increasing. Assume a = 1. Let m, = sup{tlhi(t) = 0} for each
i. Since hk(O) = 0 we wish to show o = 1 (i.e., mo= ay for each 1).

We claim that A = {x ¢ Inlx >m,, Z h,(x;) =1} = P, Clearly P CA,
i="i ieN it7i
A CP follows because every hi is convex and ncndecreasing and so

t. > t. >nm

) 2 2 My implies hi(tl) > hi(tz). This prov.> the claim. Suppose

n . ' =
m < 1 and let x € I" be defined by Xg = 1 for 1i#k and X =M.
If z hi(xi) < 1, we note that Z hi(l) > 1 since comV # 0 so that by
ieN _ ieN _ _
continuity there is an x > x with 1 > x, > Xy such that Z h.(x.) = 1.
= k ieN I 1
By the claim, we have x € P, contradicting a = L. If ) hi(xi) > 1 we
ieN
note that Z hi(mi) = 0 so that by continuity there is an I'; x with
ieN

X4 > m for each 1, X = m and 1§Nhi(xi) = 1, The claim then implies

x € P contradicting a = 1. We have proved that the assumption m < 1 is

untenable, and thus that h = 0. ¥

We now observe some corollaries of Theorem 3.2 and iis proof.

Corollary 3,2.1: Suppose V = {x ¢ Inl ) hi(xi) = 1} - R? . Then if a, =0,
ieN
h, is strictly increasing and if a. =1, h, = 0. (]
i i i

Corollsry 3.2.2: Suppose V= {x . I"| h, (x;) = 1} - Rz. Then
ieN
1} and thus if a, = 0 for each i,

n
P={xel Ixi 28 . .2 h, (x,)
n ieN
Pafxel’l] h, (x;) = 1} 3
ieN
One can sez either directly or from Corollary 3.2.1 that components i
for which a, = bi do not affect complexity. Thus, in future results we will

make the assumption that a, = 0 for each i € N. By Corollary 3.2.1 this

assumption implies that the hi are strictly increasing.
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Before giving the next result we introduce some necessary nctaticn, If

n

|
xe R and SCN we iet x(s) € RIS' derote the vector with components

X4 for i €S (i.e., the piojection of x onto RISI). Given V and

-15 N \
tel" || define Vo(t) = {x(s)lx eV, M3 ). For {i,j} €N wve use

the conventions Vl’j(t) = V{l'j}(t) and Vi(t) = V{l}(t). By Theorem 2.3

of [3], Vs(t) is an attainable set so that we are justified in taking its

Pareto surface Ps(t).

Theorem 3.3: If com V =1, a, = 0 for all i eN, SCN, and

e ae? e ™ISl i o t,, then x ¢ PSel) nvi(t?) implies x = e
If |S| =n-1 then PO(t}) NVO(td) = g.

Proof: Suppose x € Ps(tl) n Vs(tz) (this implies S # #). From (2.5), it

follows that x > 0. By Theorems 2.7 and 3,2, V N 1" = {xe Inl ) hy(x;) < 1}
ieN

where the hi are strictly increasing.

Take y, z € V such that y(N\S)a ;1, Z(N\S)= t2 and y(S) - z(s) i

Since t1 # tz there is a k ¢ S such that ti < ti. But hk is strictly

increasing so hk(yk) < hk(zk)' We conclude that iXNhi(yi) < iZNhi(zi) < 1.

By the continuity of hi’ i e N, we can increase Yi if Y; < 1 and

maintain Z hi(yi) < }. Since this contradicts x € Ps(tl), we conclude
ieN

that x = els|. To complete the proof suppose S = N\{k}. By Theorem 3.1

there is a w € P such that W S = 0. Since y >w we deduce y € P.

But z >y with z, = tz > tl 2 Yy which implies y ¢ P and so x cannot

exist, U
The following example was discussed in [3].

. I . 3 . . C o
Example: Consider V & R™ given by P - R_ where P is the line joining
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the points (1,0,0) and (0,1,1). Clearly com V 2 1. But

L2

(9,1) e P’7(0) N V'l‘z(l) so comV > 2 by Thecrem 3.3. A representation

over 12 is given in [3}, which shows com V = 2,

For SCN and t ¢ In'lbl define Fs(t) = {x(s)lx e P, x(h\s) = t}, g
With this notation we have the following result which says essentially that

the operation of computing the Pareto surface commutes with that of projection. K

Corcllary 3.3.1: If comV =1, a, = C forall ieN, SCN, te In-ISI

ana Vo't) £ ¢, then PO(t) #8 implies Po(t) = PO(t) and PO(t) = ¢

implies Ps(t) = e's'.

Proof: Clearly PO(t) CPo(t). If Po(t) £ ¢ then take x ¢ P(t) and

S N
y € V such that (y( ),y( \S)) = (x,t). If y e P we are done. Else there

isa zeP suchthat z 2y, z #y. If Z(N\S) = y(N\S) = t then
() , 4 () 4,

28) 5 & inplies x £ Po(t). Thus 2™ > ¢ bur o) 4 ¢,

Thirs implies x e V S'(z(N\S)) since x £ z(s), and we deduce from Theorem
3.3 that x = elsl. But then Fs(t) #¢# implies x € iss(t) and so
o) = P(u).
Suppose 5s(t) = @ and take x € Ps(t) #¢ and y € V such that (y(S),y(N\:,))
= (x,t), Since f"s(t) =@, y¢P. Take z € P such that z>vy, z #y.
Again 'l5s(t) = ¢ implies z(N\S) # y(N\'S) = t, Thus by Theorem 3.3,

x=eSl

Let us define a proper face of V to be a set of the form VS(O)

where S EN {we assume a 0, i e N). A conjecture that seems natural

is the following. If com V <1 then V 1is uniquely determined by its

proper faces. This conjecture is clearly true for com V = 0 (and false




for com V > 2). The following exanple shows it is false for co. V = 1.

Example: Let V = S2 - Rf. As we hav>y already seen, a representation for
V is given by hx(t) & t2 for each i. Now for each i # j, VIJ(O) is

essentially S1 - Rf. Define ﬁi: 1+1 by

1//2

A

) j;//f t
hi(t) =

\Q_/él-tz)/z t > 1/v2,

v

and let

3

+°

V={xe¢ 13|z ﬁi(xi) = 1} - R
Since the ﬁi can be seen to be convex, continuous and increasing, V is
a complexity 1 attainable set. Now
2

) + ﬁk(xk) = 1} - R°.

+

ij(O) = {x € Izlﬁj(xj

Note that (xj,xk) € VJk(O) implies that ons coordinate is in [0,1//2)

while the other is in [1/v2,1]. Suppose x5 < 1//2, Thus

2
xj/li +1 - /fz-xk)/z =1

if and only if

X172 = /(l-x:)IZ

if and only if
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that 1s,

But (1//3,1//3,1//3) ¢ G since

Hence, VJk(O) = VJk(O) for each j ¥ k.
V3,/2 51,

Thus we have two diffcrent complexity . attainable set; with

Vige) = (-=,1]

identical proper faces, since clearly VI(O) w

Although, as illustrated above, com V = 1 and {VS(O)IS # N} do not

in general, there are some special conditions under which they

determine V

do determine

We begin wit, a le.ma,

i} - R: and a, = 0 for

Lemma 3.4: Suppose V = {x e I"| hy (x4)

i e N,

Then if h, is surjective for some k € N, and

keSCN, then h, is deternined by h_ and v>(0).

Proof: Since Vl’k(o) = (VS(O))l’k(O), We may assume

x e [0,1].

is surjective, continuous and strictly increasing

there will be for a given value hi(x) a unique y ¢ [0,1] such that

(NLLKD |,

hi(x) + hk(y) = 1.

Then

) hi(z;) =1 and so z e P wvhich implies, by Corollary 3.3.1,

z({i,k}) . Pi,k 0

Dut for a given x there can be at most one such that

(x,y) ¢ Pl’k(O). Thus x uniquely determines y which in turn uniquely

Jetermines hi(x): hi(x) =1 -

ke R?I ! x 1} be the n - 1 simplex in R".

1} - R?, and a, =0 for

Lemma 3.5:

1€ 1.,

iesS.

Proof:

{X € lnl Z hi(xi)

If Scu iS| >2 and V°(0) = plSl-1 then h.(x) = x for

LN o

'e may assume S
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xj € (0,1} and xj =1 - . Then A2 € PS(O) and so by Corolidry 3.3.1

x € P, Since Z h (xk) =1 and h (0) =0 for each k we have
keN k .
hi(xi) + hj(l-xi) = 1, But then hi(xi) =] - hj(l'xi) is concave and convex

which implies hi is affine and hi(l) a ]l - hj(O) = 1, Thus hi(O) =0

implies hi(x) = x, &imilarly hj(x) = X, D

Theorem 3.6: Suppose V = {x ¢ Inl Z hi(xi) =R VI R?, and aL = 0 for
ieN tal g
ieN. If keSCN with |S] 22 and Vo(0) = T'°' ', then V is

determined by {v“(0)| [r' =2, ke L)

I
K is determined by v (0) for some ke LCS

E‘ Proof: By Lemma 3.5, h
¢ with |L| = 2. In fact, h (x) = x and so h

K is surjective. Then by

Lenna 3.4 the h. for i # k are detemined by {V'(0)| ju| = 2, k e L}, []

It is not hard to see that we can replace {VL(O)I L] + 2, kelL} in
Theorem 3,6 by (VL(O)lL € B} wherc B C {L|L © N} is such that LCS$
for some L € B, and for each i e N there s an L € B such thut
ffiiliY & L

We conclude with a rather curious property of complexity 1 attainable

sets.

Theorem 2,7: Let V C Rn be an attainable set such that com V =1 and

a, =0 for each i. Suppose i ,1, are not necessarily distinct

i 1ol
1 elements of N where k > 1 is odd and il = ik. Suppose also that

: i.i,

g i i+l

E XyseeesX are such that for 1 < j <k, (xj'xj+l) e P (0). Then

Proof: Bv Theorem 3.2, we have a representation

n n
V={xel [iZNhi(xi) =1} - R,
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with the h

£ i strictly increasing, and by Corollary 3.2.2,

P=1{xe Inl ! h.(x;) = 1}.
ieN 101

How for each j, 1 < j <k,

Siliet 2 :
P (0) = {x eI 1h1 (x)) +hy  (x;) = 1}
j j+l

The hypothesis thus implies that h, (x.) = h, (x...,) for 1 <j<k-2,
i, 1j+2 j+2 Bl e
and hence hil(xl) = hik(xk)' Since il =1, and hil is strictly increasing

Example: Let V C R3 be given by

2
V = conv (A~3 u A13 V] Alz)

where 2% . {x ¢ R£2‘3}|x2 *xg= 1},
Ad s (x ¢ Ril’b}ixl + xg =1}, and
Alz = {x ¢ Rf1‘2}|x1 =1+ xz(l-/E), X2 1/v/2}
Uixe REI’Z}Ixf + xg =1, x; £ 1/¥2}.
f : Now the sets 5ij(0) are essentially given by the sets Aij. Let il,...,i7

be the sequence 3,1,2,3,1,2,3. Let (x,...,X;) = (1/2,1/2,/372,1-V/372,

/3/2,(/3/2-1}/(1-v¥2) ,(2-¥2-¥3/2)/(1-/2)). It can be checked that (Xyseee,s)
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. catisfies the requirements of the thcorem, yet Xy # Xqe We conclude that

i - com V # 1. We could have obtained this concivsion from Lemma 3.5 as well,

; We remark that Theorem 3.7 provides a necessary and sufficient condition

for the existence of hi's, not. necessarily convex, which give

PPV en, |s| = 2.




REFERENCES

i S {11 A~row, K. J., E.W. Barankin and D. Blackwell, Admissible points of
] coivex sets, Contributions to the Theory of Games, vol. II, H, V,
& T Kuhn and A. W. Tucker, Eds., Aunals of Mathematics Studies, N,. 28,
EN | Prirceton University Press, Princeton, N.J., 1953,

2= [2] B®illera, L. J., Ou ganes without ,ide payments arising from a general
ciass of markets, Technical Report No. 184, Departmer< uf Operations
Peseazch, lornell Uriversity. June 1973,

i ot o

{2) Billera, L. J., and R. E. Bixby, A characterization of Pareto surfaces,
y

rere——

. Proc. Amer. Math. Soc. (to appear).
S [4] Billera L J. and R, E. Bixby, A characterization of polvhedral market
F games, 1. cernational Jouinal of Game Theory (to aprear).

e

"S] Billera, L. J. and R. E. Bixby, Characterizing market games (to appear).

o G T

-n

E 5 . DEPARTMENT OF OPERATIONS RESFARCH AND DEPARTMENT OF MATHEMATICS, CORNELL
1 UNiIVERSITY, ITHACA, NEW YORK 14850

DEPARTMENT OF MATHEM/TICS, UNIVERSITY OF KENTUCKY, LEXINGTON. KENTUCKY 405Co

il e e

19




